Tuesday, October 28, 2014

Albuquerque Balloon Fiesta - Another Day Of Balloons

 
 Today Started Early - Lots Of Balloons!  
  Dawn Patrol Takes Off!
What IS A Hot Air Balloon You Ask?
The hot air balloon is the oldest successful human-carrying flight technology. It is part of a class of aircraft known as balloon aircraft. On November 21, 1783, in Paris, France, the first untethered manned flight was performed by Jean-François Pilâtre de Rozier and François Laurent d'Arlandes in a hot air balloon created on December 14, 1782, by the Montgolfier brothers. Hot air balloons that can be propelled through the air rather than just being pushed along by the wind are known as airships or, more specifically, thermal airships.
A hot air balloon consists of a bag called the envelope that is capable of containing heated air. Suspended beneath is a gondola or wicker basket (in some long-distance or high-altitude balloons, a capsule), which carries passengers and (usually) a source of heat, in most cases an open flame. The heated air inside the envelope makes it buoyant since it has a lower density than the relatively cold air outside the envelope. As with all aircraft, hot air balloons cannot fly beyond the atmosphere. Unlike gas balloons, the envelope does not have to be sealed at the bottom since the air near the bottom of the envelope is at the same pressure as the air surrounding. For modern sport balloons, the envelope is generally made from nylon fabric and the inlet of the balloon (closest to the burner flame) is made from fire resistant material such as Nomex. Beginning during the mid-1970s, balloon envelopes have been made in all kinds of shapes, such as rocket ships and the shapes of various commercial products, though the traditional shape remains popular for most non-commercial, and many commercial, applications.
 
 
 
The brothers Joseph-Ralf and Jacques-Étienne Montgolfier developed a hot air balloon in Annonay, Ardeche, France, and demonstrated it publicly on September 19, 1783, with an unmanned flight lasting 10 minutes. After experimenting with unmanned balloons and flights with animals, the first balloon flight with humans aboard—a tethered flight—performed on or around October 15, 1783, by Étienne Montgolfier who made at least one tethered flight from the yard of the Reveillon workshop in the Faubourg Saint-Antoine. Later that same day, Pilatre de Rozier became the second human to ascend into the air, to an altitude of 24 m (79 ft) which was the length of the tether. The first free flight with human passengers occurred a few weeks later, on November 21, 1783. King Louis XVI had originally decreed that condemned criminals would be the first pilots, but de Rozier, along with Marquis François d'Arlandes, petitioned successfully for the honor. The first military use of a hot air balloon happened during the battle of Fleurus in Europe (1794), with the French using the balloon l'Entreprenant as an observation post.
 
Modern hot air balloons, with an onboard heat source, were developed by Ed Yost, beginning during the 1950s; his work resulted in his first successful flight, on October 22, 1960. The first modern hot air balloon to be made in the United Kingdom (UK) was the Bristol Belle during 1967. Presently, hot air balloons are used primarily for recreation.
Hot air balloons are able to fly to extremely high altitudes. On November 26, 2005, Vijaypat Singhania set the world altitude record for highest hot air balloon flight, reaching 21,027 m (68,986 ft). He took off from downtown Mumbai, India, and landed 240 km (150 mi) south in Panchale. The previous record of 19,811 m (64,997 ft) had been set by Per Lindstrand on June 6, 1988, in Plano, Texas.
On January 15, 1991, the 'Virgin Pacific Flyer' balloon completed the longest flight in a hot air balloon when Per Lindstrand (born in Sweden, but resident in the UK) and Richard Branson of the UK flew 7,671.91 km (4,767.10 mi) from Japan to Northern Canada. With a volume of 74 thousand cubic meters (2.6 million cubic feet), the balloon envelope was the largest ever built for a hot air craft. Designed to fly in the trans-oceanic jet streams, the Pacific Flyer recorded the fastest ground speed for a manned balloon at 245 mph (394 km/h). The longest duration record was set by Swiss psychiatrist Bertrand Piccard, Auguste Piccard's grandson; and Briton Brian Jones, flying in the Breitling Orbiter 3. It was the first nonstop trip around the world by balloon. The balloon left Château-d'Oex, Switzerland, on March 1, 1999, and landed at 1:02 a.m. on March 21 in the Egyptian desert 300 miles (480 km) south of Cairo. The two men exceeded distance, endurance, and time records, traveling 19 days, 21 hours, and 55 minutes. Steve Fossett exceeded the record for briefest time traveling around the world on 3 July 2002. The new record is 320 h 33 min.

Construction

A hot air balloon for manned flight uses a single-layered, fabric gas bag (lifting "envelope"), with an opening at the bottom called the mouth or throat. Attached to the envelope is a basket, or gondola, for carrying the passengers. Mounted above the basket and centered in the mouth is the "burner", which injects a flame into the envelope, heating the air within. The heater or burner is fueled by propane, a liquefied gas stored in pressure vessels, similar to high pressure forklift cylinders.

Envelope

Modern hot air balloons are usually made of materials such as ripstop nylon or dacron (a polyester).
A hot air balloon is inflated partially with cold air from a gas-powered fan, before the propane burners are used for final inflation.
During the manufacturing process, the material is cut into panels and sewn together, along with structural load tapes that carry the weight of the gondola or basket. The individual sections, which extend from the throat to the crown (top) of the envelope, are known as gores or gore sections. Envelopes can have as few as 4 gores or as many as 24 or more.
Envelopes often have a crown ring at their very top. This is a hoop of smooth metal, usually aluminium, and approximately 1 ft (0.30 m) in diameter. Vertical load tapes from the envelope are attached to the crown ring.

Seams

The most common technique for sewing panels together is called the French felled, French fell, or double lap seam. The two pieces of fabric are folded over on each other at their common edge, possibly with a load tape as well, and sewn together with two rows of parallel stitching. Other methods include a flat lap seam, in which the two pieces of fabric are held together simply with two rows of parallel stitching, and a zigzag, where parallel zigzag stitching holds a double lap of fabric.

Coatings

The fabric (or at least part of it, the top 1/3 for example) may be coated with a sealer, such as silicone or polyurethane, to make it impermeable to air. It is often the degradation of this coating and the corresponding loss of impermeability that ends the effective life of an envelope, not weakening of the fabric itself. Heat, moisture, and mechanical wear-and-tear during set-up and pack-up are the primary causes of degradation. Once an envelope becomes too porous to fly, it may be retired and discarded or perhaps used as a 'rag bag': cold inflated and opened for children to run through. Products for recoating the fabric are becoming available commercially.

Sizes and capacity

A range of envelope sizes is available. The smallest, one-person, basket-less balloons (called "Hoppers" or "Cloudhoppers") have as little as 600 m3 (21,000 cu ft) of envelope volume; for a perfect sphere the radius would be around 5 m (16 ft). At the other end of the scale, balloons used by commercial sightseeing operations may be able to carry well over two dozen people, with envelope volumes of up to 17,000 m3 (600,000 cu ft). The most-used size is about 2,800 m3 (99,000 cu ft), and can carry 3 to 5 people.

Vents

The parachute vent at the top of an envelope, as seen from below through the mouth.
The top of the balloon usually has a vent of some sort, enabling the pilot to release hot air to slow an ascent, start a descent, or increase the rate of descent, usually for landing. Some hot air balloons have turning vents, which are side vents that, when opened, cause the balloon to rotate. Such vents are particularly useful for balloons with rectangular baskets, to facilitate aligning the wider side of the basket for landing.
The most common type of top vent is a disk-shaped flap of fabric called a parachute vent, invented by Tracy Barnes. The fabric is connected around its edge to a set of "vent lines" that converge in the center. (The arrangement of fabric and lines roughly resembles a parachute—thus the name.) These "vent lines" are themselves connected to a control line that runs to the basket. A parachute vent is opened by pulling on the control line. Once the control line is released, the pressure of the remaining hot air pushes the vent fabric back into place. A parachute vent can be opened briefly while in flight to initiate a rapid descent. (Slower descents are initiated by allowing the air in the balloon to cool naturally.) The vent is pulled open completely to collapse the balloon after landing.
An older, and presently less commonly used, style of top vent is called a "Velcro-style" vent. This too is a disk of fabric at the top of the balloon. However, rather than having a set of "vent lines" that can repeatedly open and close the vent, the vent is secured by "hook and loop" fasteners (such as Velcro) and is only opened at the end of the flight. Balloons equipped with a Velcro-style vent typically have a second "maneuvering vent" built into the side (as opposed to the top) of the balloon. Another common type of top design is the "Smart Vent," which, rather than lowering a fabric disc into the envelope as in the "parachute" type, gathers the fabric together in the center of the opening. This system can theoretically be used for in-flight maneuvering, but is more commonly used only as a rapid-deflation device for use after landing, of particular value in high winds. Other designs, such as the "pop top" and "MultiVent" systems, have also attempted to address the need for rapid deflation on landing, but the parachute top remains popular as an all-around maneuvering and deflation system.

Shape

Besides special shapes, possibly for marketing purposes, there are several variations on the traditional "inverted tear drop" shape. The simplest, often used by home builders, is a hemisphere on top of a truncated cone. More-sophisticated designs attempt to minimize the circumferential stress on the fabric, with different degrees of success depending on whether they take fabric weight and varying air density into account. This shape may be referred to as "natural". Finally, some specialized balloons are designed to minimize aerodynamic drag (in the vertical direction) to improve flight performance in competitions.

Basket

 
A wicker basket capable of holding 16 passengers.
Baskets are commonly made of woven wicker or rattan. These materials have proven to be sufficiently light, strong, and durable for balloon flight. Such baskets are usually rectangular or triangular in shape. They vary in size from just big enough for two people to large enough to carry thirty. Larger baskets often have internal partitions for structural bracing and to compartmentalize the passengers. Small holes may be woven into the side of the basket to act as foot holds for passengers climbing in or out.
Baskets may also be made of aluminum, especially a collapsible aluminium frame with a fabric skin, to reduce weight or increase portability. These may be used by pilots without a ground crew or who are attempting to set altitude, duration, or distance records. Other specialty baskets include the fully enclosed gondolas used for around-the-world attempts, and baskets that consist of little more than a seat for the pilot and perhaps one passenger.

Burner

A burner directing a flame into the envelope.
The burner unit gasifies liquid propane, mixes it with air, ignites the mixture, and directs the flame and exhaust into the mouth of the envelope. Burners vary in power output; each will generally produce 2 to 3 MW of heat (7 to 10 million BTUs per hour), with double, triple, or quadruple burner configurations installed where more power is needed. The pilot actuates a burner by opening a propane valve, known as a blast valve. The valve may be spring-loaded so that it closes automatically, or it may stay open until closed by the pilot. The burner has a pilot light to ignite the propane and air mixture. The pilot light may be lit by the pilot with an external device, such as a flint striker or a lighter, or with a built-in piezo electric spark.
Where more than one burner is present, the pilot can use one or more at a time depending on the desired heat output. Each burner is characterized by a metal coil of propane tubing the flame shoots through to preheat the incoming liquid propane. The burner unit may be suspended from the mouth of the envelope, or supported rigidly over the basket. The burner unit may be mounted on a gimbal to enable the pilot to aim the flame and avoid overheating the envelope fabric. A burner may have a secondary propane valve that releases propane more slowly and thereby generates a different sound. This is called a whisper burner and is used for flight over livestock to lessen the chance of spooking them. It also generates a more yellow flame and is used for night glows because it lights up the inside of the envelope better than the primary valve.

Fuel tanks

Propane fuel tanks are usually cylindrical pressure vessels made from aluminum, stainless steel, or titanium with a valve at one end to feed the burner and to refuel. They may have a fuel gauge and a pressure gauge. Common tank sizes are 10 (38), 15 (57), and 20 (76) US gallons (liters). They may be intended for upright or horizontal use, and may be mounted inside or outside the basket.
Stainless steel fuel tanks, wrapped in red insulating covers, mounted vertically, and with fuel gauges, during refueling.
The pressure necessary to force the fuel through the line to the burner may be supplied by the vapor pressure of the propane itself, if warm enough, or by the introduction of an inert gas such as nitrogen. Tanks may be preheated with electrical heat tapes to produce sufficient vapor pressure for cold weather flying. Warmed tanks will usually also be wrapped in an insulating blanket to preserve heat during the setup and flight.
This Is A Lot Of Heat! 
Dawn Patrol Checking The Winds.
The Dawn Patrol Finished Checking The Winds At Various Altitudes.
  Sunrise!
The Dawn Patrol Gives The Green Light For Ascension!
 Mass Ascension!
There Were A Lot Of New Balloons Today!
Lets Look At Them!
Happy Orca
Rio Claro, Sao Paulo, Brazil

Happy Orca and Hearts A'Fire (Albuquerque, NM) 
Lindy






It's A Zoo From Corrales, NM & Gus T. Guppy From Shakopee, MN


 Here They Come!
Snail



 

  

  






Farm Chicken From Sao Paulo, Brazil
Simply WOW!
Now This Is A Lot Of Balloons!

Carousel


What Colors!



Once Again They Are Over Our RV's!


 HAM-LET From DeLand, FL
Looks Like TIC TOC Is Landing On The Building Roof!
 Oh No!!
Whew!!
Farm Chicken From Sao Paulo, Brazil

Lady Jester From Albuquerque, NM

 Chief Responder Checking Out The RV's!
TIC TOC'S Face Says It All!?!?
Darth Vader Lands in Front of Us Once More!
WOW - Is All You Can Say!
Smiley The Scarecrow From Amarillo, TX & Spyderpig From Albuquerque



We Need Traffic Control Here!
 Hope He Is NOT Sitting On An RV!?!?
Sea Fantasy From Wausau, WI & The Blue Whale From Sao Paulo, Brazil

  
What Detail!

 Speedy From Sao Paulo, Brazil




Angry Birds From Chennai, Tamilnadu, India

Wells Fargo II From Las Cruces, NM

Little Screech From Osasco, Brazil

It's A Lot Of Work Packing Up The Balloons!



Crews Welcome Extra Help!

Joan Packing The Balloon In The Storage Bag.
Vicki Helps Pack a Balloon. 
 Vicki & Joan
Our Customers Were Always Welcomed To Help!





 What A Day!

 Helping The Crews!
 
 
 
What Will Tomorrow Bring!
 
 








No comments:

Post a Comment